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Abstract

Purpose – The transient hydrodynamics and thermal behavior of free convection flow over an
isothermal vertical flat plate is investigated.

Design/methodology/approach – The study focuses on the role of the local acceleration term in
the magnetohydrodynamic (MHD) momentum equation. A finite difference method based on a
second-order differential equation is used to solve the differential equations.

Findings – It is found that the local acceleration term has insignificant effect on the flow behavior
especially at large values of magnetic forces. Also, it is found that the effect of the magnetic forces on
the flow hydrodynamics behavior is significant but its effect on the thermal behavior is insignificant. It
has been realized that the local acceleration term is usually small compared to the magnetic retarding
force, and hence can be neglected.

Research limitations/implications – A quantitative description of the operating and geometrical
parameters within which the local acceleration term may be significant is not available in the literature
yet. Also, the authors’ intention is to improve physical understanding of the hydrodynamic and
thermal behaviors of the present problem.

Originality/value – The study provides results concerning the thermal behavior of free convection
flow.

Keywords Convection, Flow, Hydrodynamics

Paper type Research paper

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

www.emeraldinsight.com/researchregister www.emeraldinsight.com/0961-5539.htm

Nomenclature
B ¼ magnetic flux density
c ¼ specific heat of fluid at constant

pressure
Ec ¼ modified Eckert number, n 2=x 2cDT
f ¼ dimensionless stream function
g ¼ gravitational body force per unit

mass
Gr0 ¼ modified Grashof number,

gbDTx 3=4n 2

I ¼ the parameter, gbDT=4n 2
� �1=4

k ¼ thermal conductivity
N ¼ modified Hartmann number,

sB 2x 2=m
ffiffiffiffiffiffiffi
Gr0

p

Pr ¼ Prandtl number, n=a
t ¼ time
t* ¼ dimensionless time,

ffiffiffiffiffiffiffi
Gr0

p
ðnt=x 2Þ

T ¼ temperature at any point
T0 ¼ ambient and initial temperatures
Tw ¼ wall temperature
u ¼ axial velocity
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Introduction
Magnetohydrodynamic (MHD) convection flow has many important engineering
applications in the design of power generators, heat exchangers, pumps, and flow
meters, in solving space vehicle propulsion, control, and re-entry problems; in
designing communications and radar systems; in creating novel power-generating
systems; in developing confinement schemes for controlled fusion; and in nuclear
engineering in connection with the cooling of reactors and MHD accelerators.

The problem of MHD natural convection past an infinite or semi-infinite vertical
moving plate has been considered by many investigators (Chamkha, 1999; Takhar and
Beg, 1997; Vayjravelu and Hadyinicolaou, 1997). Many papers concerned with the
problem of MHD steady forced and free convection flow have been published in the
literature. As an example, the steady free convection flow of an electrically conducting
fluid past over or into different geometries is investigated in the works of Sparrow and
Cess (1961), Riley (1964), Raptis and Singh (1983), Vajravelu and Nayfeh (1987),
Setayesh and Sahai (1990), Garandet et al. (1992), Hossain (1992), Watanabe (1993),
Aldoss et al. (1995), Al-Nimr (1995), Al-Nimr and Hader (1999) and Aldoss et al. (1996).
Fewer studies have been carried out to investigate the MHD transient free-convection
flow (Sacheti et al. 1994; Al-Nimr and Alkam, 1999; Gulab and Mishra, 1977).

The main goal of the present study is to investigate the role of the local acceleration
term in the MHD momentum equation and its effect on the hydrodynamics and thermal
behavior of the free convection flow over an isothermal vertical flat plate. In the
literature about MHD fluid flow, it has been realized that the local acceleration term is
usually small compared to the magnetic retarding force, and hence can be neglected. The
local acceleration term may be important if an oscillatory driving force is imposed on the
system or if the magnetic force is so weak. A quantitative description of the operating
and geometrical parameters within which the local acceleration term may be significant
is not available in the literature yet. Also, our intention is to improve our physical
understanding of the hydrodynamic and thermal behaviors of the present problem.

Governing equations and boundary conditions
We consider unidirectional unsteady laminar free convection flow of an electrically
conducting and incompressible viscous fluid over an isothermal vertical plate,
immersed in a stagnant fluid of infinite extent and maintained at a constant
temperature T0. The vertical plate is assumed to be nonconducting and the hall effect is
negligible. Initially, both wall and fluid have temperature equal to the ambient one T0

and the imposed magnetic field is absent. Then sudden step change in the wall
temperature, from T0 to Tw, and in the imposed magnetic field, from 0 to B, is applied.

v ¼ transverse velocity
x ¼ axial coordinate
y ¼ transverse coordinate

Greek symbols

a ¼ thermal diffusivity, k/rc
b ¼ volumetric coefficient of thermal

expansion
DT ¼ the difference (Tw2T0)

h ¼ similarity variable, Iyx 21/4

u ¼ dimensionless temperature,
(T 2 T0)/(Tw2T0)

m ¼ dynamic viscosity of fluid
n ¼ kinematic viscosity of fluid, n/r
r ¼ fluid density
s ¼ the electrical conductivity of the

fluid
c ¼ stream function, 4nIx 3/4f(t,x,h)
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The suddenly imposed magnetic field is assumed uniform and directed toward the
positive transverse direction as shown in Figure 1. The impressed electrical field is
assumed to be zero and the induced magnetic field of the flow is negligible in
comparison with the applied one, which corresponds to a very small magnetic
Reynolds number. The fluid is assumed to be Newtonian and obeys the Boussinesq
approximation according to which its density is constant except in the gravitational
term of the vertical momentum equation. Also, both viscous dissipation and other
external sources of heat generation are absent.

Under the above-mentioned assumptions, using boundary layer approximation, the
equations of continuity, motion and energy reduce to the following equations:

›u

›x
þ

›v

›y
¼ 0 ð1Þ

›u

›t
þ u

›u

›x
þ v

›u

›y
¼ gbDTuþ n

›2u

›y 2
2

sB 2u

r
ð2Þ

›u

›t
þ u

›u

›x
þ v

›u

›y
¼ a

›2u

›y 2
2

sB 2u 2

rcDT
ð3Þ

and the initial and boundary conditions are:

uð0; x; yÞ ¼ vð0; x; yÞ ¼ uð0; x; yÞ ¼ 0

uðt; x;1Þ ¼ vðt; x;1Þ ¼ uðt; x;1Þ ¼ 0

uðt; 0; yÞ ¼ vðt; 0; yÞ ¼ uðt; 0; yÞ ¼ 0

uðt; x; 0Þ ¼ vðt; x; 0Þ ¼ 0; uðt; x; 0Þ ¼ 1

ð4Þ

where x and y are the axial and normal coordinates, u and v are the axial and normal
velocities, respectively, g is the gravitational acceleration acting downward in a
direction opposite to the x coordinate, u ¼ ðT 2 T0Þ=ðTw 2 T0Þ the dimensionless
temperature, T0 the ambient temperature outside the boundary layer, Tw the wall

Figure 1.
Schematic diagram of the
problem under
consideration
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temperature, b the thermal expansion coefficient, s the fluid electrical conductivity,
B the magnetic induction, DT ¼ ðT 2 T0Þ; r the fluid density, n the fluid kinematic
viscosity, a the fluid thermal diffusivity and c the fluid specific thermal capacity.

Introducing the stream function c, such that u ¼ ›c=›y and v ¼ 2›c=›x to satisfy
the continuity equation, and introducing the following similarity variables

c ¼ 4nIx 3=4f ðt;hÞ; h ¼ Iyx21=4; I ¼
gbDT

4n 2

� �1=4

with

u ¼ 4nI 2x 1=2f 0ðt;hÞ; v ¼ nIx21=4f 0ðt;hÞ2 3nIx21=4f ðt;hÞ

›u

›y
¼ 4nI 3x 1=4f 00ðt;hÞ;

›u

›y
¼ Ix21=4u 0;

›u

›t
¼ 4nI 2x 1=2 ›f 0ðt;hÞ

›t

and the derivative notation in f0 refers to the derivative with respect to h. Using the
above transformations, the governing equations (1)-(4) are reduced to the following
similarity equations:

›f 0

›t*
þ 2ðf 0Þ2 3ff 00 ¼ uþ f 00 2 Nf 0 ð5Þ

Pr
›u

›t*
2 3Prf u 0 ¼ u 00 þ ½16NPrEcGr0�ðf 0Þ2 ð6Þ

with

f ðt* ; 0Þ ¼ 0; f 0ðt* ; 0Þ ¼ 0; f 0ðt* ;1Þ ¼ 0; uðt* ; 0Þ ¼ 1; uðt* ;1Þ ¼ 0;

f 0ð0;hÞ ¼ 0; uð0;hÞ ¼ 0
ð7Þ

where Pr ¼ n=a, N ¼ sB 2x 2=m
ffiffiffiffiffiffiffi
Gr0

p
, Ec ¼ n2=x 2cDT , Gr0 ¼ gbDTx 3=4n 2,

t* ¼
ffiffiffiffiffiffiffi
Gr0

p
nt=x 2The above system of equations (5)-(7) reduce to the conventional

system of equations governing the case of steady free convection problem, once N put
to zero, and dropping the unsteady term. This facilitates the using of the computational
technique and allows validating the solution against the known solutions. The N-term
is nothing but the known Hartmann number divided by the square root of Grashof
number. Hartmann number measures the importance of the magnetic force in
comparison with that of the viscous force. Also, it is important to notice that the order
of magnitude of the magnetic term in the energy equation is of negligible value in
comparison with that in the momentum equation especially at low Eckert number.
Subsequently, after tracing the hydrodynamics and thermal behavior of the present
problem, it is found that the term ½16NPrEcGr0�ðf 0Þ2; which represents the ohmic
heating, has insignificant effect on the flow behavior under wide range of operating
conditions, and as a result, this term will be omitted.

Solution methodology
A finite difference method based on a second-order differential equation (Moran, 1984)
is used to solve the differential equations (5) and (6). First, equation (5) which is a third
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order differential equation is decomposed into a pair of differential equations, one
first-order and the other second-order, where

u ¼
›f

›h
ð8Þ

and

›2u

›h 2
2 2u 2 þ 3f

›u

›h
2

›u

›t*
þ u2 Nu ¼ 0 ð9Þ

The energy equation (6) is kept as is since it is already a second-order differential
equation. A sequential iterative scheme is set up to iterate for the solution of the above
three equations (6), (8) and (9).

Before discretizing equation (9), the nonlinear term u 2, is linearized via Newton’s
method as:

u 2 ¼ �u 2 þ 2ðu 2 �uÞ�u ð10Þ

where �u considered is known from previous iteration. Equations (6), (8) and (9) are then
discretized using the central differencing scheme. This result in a system of the
following form:

Aiui21 þ Biui þ Ciuiþ1 ¼ D ð11Þ

which is a tridiagonal system whose coefficients are known. This system is solved
using Thomas algorithm.

A fully implicit scheme is used to introduce the effect of the unsteady term. A system
of algebraic equations are solved at each time level. The time marching procedure starts
with a given initial field of velocity and temperatures. The system of equation (11) is
solved after selecting the time step Dt*. Once obtaining a converged solution, the
solution is assigned old solution and the procedure is repeated to progress the solution
by a further time step. Small time steps are needed to ensure accurate results. Number of
different values of Dt* are experimented and Dt* ¼ 0:001 is found good enough where
the final results attain the same values up to the fifth decimal point.

Boundary layers thicknesses are allowed to grow with each value of MHD
parameter N. It is found that the values of f 00ðt* ;1Þ and u 0ðt* ;1Þ are required to be
less than 1025 to assure reaching the edge of the boundary layers. The steady state is
said to be reached when the difference between successive values divided by the last
value is less than 1025.

To achieve better accuracy a nonuniform gridding is also used. To check the numerical
scheme, the results for the steady case and with zero value of N, are obtained. The results of
this special case agree exactly with the known-reported f 00(0) and u 0(0) values.

Results and discussion
After tracing the hydrodynamics and thermal behavior of the present problem, it is
found that the term ½16NPrEcGr0�ðf 0Þ2; which represents the ohmic heating, has
insignificant effect on the flow behavior under wide range of operating conditions, and
as a result, this term will be omitted.
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Figure 2 shows the variation of f 0ðt* ;hÞ, which is proportional to the axial velocity u,
with the similarity variable h at different modified Hartmann numbers N. As N
increases, the flow currents are suppressed and this is justified since the magnetic field
has a retarding effect on the velocity. This is also clear from the negative sign associated
with the magnetic term in the momentum equation (2). This is true even if the direction
of the imposed magnetic field is reversed due to the appearance of B 2 in the equation.
Also, as N increases, the location of the maximum velocity is shifted toward the wall
side. In free convection, it is known that the temperature obtained from the energy
equation affects the flow hydrodynamics behavior and the velocity obtained from the
momentum equation affects the flow thermal behavior. However, the effect of
temperature on the momentum equation is much larger than the effect of the velocity on
the energy equation since temperature is the only source that causes the fluid motion.
From Figure 2 it is seen that N has significant effect on the velocity, but due to the
insignificant effect of the velocity on the energy equation, the temperature is not
sensitive to N.

Figures 3 and 4 show the effect of N on the steady state time (SST), f 00ðt* ; 0Þ and
2u0ðt* ; 0Þ at different Prandtl numbers Pr. The SST is defined as the time required by
the fluid and temperature to attain steady state behavior and this parameter is very
important since it reflects the importance of the local acceleration term ›u=›t. The term
f 00ðt* ; 0Þ is proportional to the shear stress at the wall and the term 2u0ðt* ; 0Þ is
proportional to the heat transfer at the wall. It is clear from these figures that SST
decreases sharply as N increases which indicates that the local acceleration term ›u=›t
has insignificant effect on the flow behavior at large values of N and at small values of
Pr. This may be justified by returning to equation (2) after neglecting all effects except
the local inertial and magnetic terms:

›u

›t
þ

sB 2u

r
¼ 0 ð12Þ

Equation (12) assumes the following solution:

Figure 2.
Effect of the modified

Hartmann number N on
the axial velocity

distribution at Pr ¼ 0.01,
Ec ¼ 1.0 and

Gr0 ¼ 7 £ 1024
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uðtÞ ¼ EesB 2=rt ð13Þ

where E is the constant of integration. Equation (13) shows that as B, or N, increases,
the flow attains its steady state behavior in a very short period. Another physical
justification relies on the fact that shorter time is required to reach the lower values of
the velocities which become lower due to the increase in N. Figures 3 and 4 show that
2u0ðt* ; 0Þ is not sensitive to the variation in N especially at small Pr. As mentioned
previously, 2u0ðt* ; 0Þ represents the heat transfer which is not sensitive to the
variation in N since the energy equation is not strongly affected by the velocity
obtained from the momentum equation. The heat transfer through the boundary layer
is derived mainly by thermal diffusion which is not affected by the velocity and hence

Figure 4.
Effect of the modified
Hartmann number N on
SST, f 00(t*,0) and 2u 0(t*,0)
at Pr ¼ 0.00001, Ec ¼ 1.0
and Gr0 ¼ 7 £ 1024

Figure 3.
Effect of the modified
Hartmann number N on
SST, f 00(t*,0) and 2u 0(t*,0)
at Pr ¼ 0.01, Ec ¼ 1.0 and
Gr0 ¼ 7 £ 1024
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by the magnetic forces. The figures show that f 00ðt* ; 0Þ decreases sharply as N
increases and its behavior is very close to the SST behavior. The reduction in f 00ðt* ; 0Þ
is due to the declination in the velocity.

Figure 5 shows the variation of f 00ðt* ; 0Þ with h at different N. At low N, and as h
increases, f 00ðt* ; 0Þ decreases and then increases to reach zero asymptotically and this
is a typical and predicted behavior. However, at large values of N, f 00ðt* ; 0Þ decreases
asymptotically to zero without showing the optimum minimum behavior. The figure
shows that the wall shear stress decreases as N increases and this is justified
previously.

Figure 6 shows the transient behavior of u0ðt* ; 0Þ at different N. Again, the figure
shows that the flow attains its steady state behavior very fast and the effect of N on
this behavior is insignificant and this is justified previously.

Figure 5.
Effect of the modified

Hartmann number N on
f 00(t*,0) distribution at

Pr ¼ 0.01, Ec ¼ 1.0 and
Gr0 ¼ 7 £ 1024

Figure 6.
Effect of the modified

Hartmann number N on
u0(t*,0) transient

distribution at Pr ¼ 0.01,
Ec ¼ 1.0 and

Gr0 ¼ 7 £ 1024
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Figure 7 shows the transient wall shear stress at different N. As N increases the wall
shear stress decreases and attains its steady state values in shorter time. This behavior
is also justified previously.

Conclusions
The transient hydrodynamics and thermal behavior of free convection flow over
isothermal vertical plate is investigated using similarity approach. The study focuses
on the role of the local acceleration term in the MHD momentum equation. It is
concluded that the SST decreases sharply as N increases which indicates that the local
acceleration term ›u=›t has insignificant effect on the flow behavior at large values of
N and at small values of Pr. The effect of the magnetic forces on the flow
hydrodynamics behavior is found to be significant, but this is not the case with the
thermal behavior. The temperature distribution within the thermal boundary layer is
found to be almost linear and the ohmic heating term is found to have insignificant
effect on the flow behavior under wide ranges of operating conditions. As N increases,
the location of the maximum velocity is shifted toward the wall side. It is concluded
that the heat transfer at the wall is not sensitive to the variation in N especially at small
Pr while the wall shear stress decreases sharply as N increases.
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